EKSPANSIVITAS DAN KOMPRESIBILITAS
I. Latar Belakang
Gas merupakan wujud zat yang paling sederhana, dimana partikel penyusunnya selalu bergerak bebas. Bentuk dan volume gas itu sendiri dapat berubah-ubah sesuai dengan tempatnya. Berbeda dengan bentuk zat lainnya, karakteristik gas sangat erat kaitannya dengan tekanan, temperatur, dan volume. Dalam kehidupan sehari-hari kita sering menggunakan kendaraan mobil atau motor, saat mengisi angin kondisi ban tidak boleh terlalu penuh atau keras karena udara di dalam ban akan memuai disaat panas, sehingga bisa menyebabkan ban mobil atau motor pecah. Dengan memhami prinsip ini, dapat diketahui bahwa perubahan suhu akan membuat suatu materi mengalami pemuaian(Hamid,2007).
Oleh karena itu dilakukanlan percobaan ekspansivitas dan kompresibilitas ini, untuk dapat memahami lebih dalam mengenai ekspansivitas dan kompresibilitas dari suatu gas serta dapat mengaplikasikannya dalam kehidupan sehari-hari.
II. Tujuan Percobaan
2.1 Menentukan hubungan antara volume dan suhu dari suatu gas
2.2 Menentukan hubungan antara volume dan tekanan dari suatu gas
2.3 Menunjukkan anomali air dan menentukan suhu dimana air mempunyai massa jenis maksimum
2.4 Menentukan kompresibilitas gas (K)
III. Dasar Teori
Kompresibilitas adalah fraksi pengurangan volume penentuan kenaikan perubahan volume dalam suatu tekanan seperti persamaan berikut :
tanda negatif disebabkan karena volume
selalu menyusut bila tekanan naik, jadi (∂V/∂P)T secara inheren
bernilai negatif. Sehingga kompresibilitas merupakan besaran bernilai positif.
Persamaan kompresibilitas untuk gas ideal sebagai berikut :
sehingga
diperoleh nilai kompresibilitas yaitu :
dengan
v sebagai volume gas, ΔP sebagai perubahan tekanan gas, ΔV sebagai perubahan
volume gas terhadap temperature yang konstan(Daryus,2008).
Ekspansivitas
merupakan fraksi perubahan volume perderajat perubahan temperature apabila tekanan
dijaga konstan, dengan persamaan sebagai berikut :
untuk
persamaan ekspansivitas gas ideal adalah sebagai berikut :
jika
gas berada pada dua sistem tertutup yang mempunyai tekanan sama menjadi bentuk
persamaan (5). Ekspansivitas pada bentuk persamaan (5) akan menjadi persamaan
lain saat dibatasi pada perbedaan temperature dengan bentuk persamaan sebagai
berikut (7) :
dengan
V sebagai volume gas, ΔV sebagai perubahan volume, ΔT sebagai perubahan
temperature terhadap tekanan yang konstan(Hikman,2005).
Dalam
daerah satu fasa, tekanan, dan temperature bersifat independen dan dapat
dianggap volume spesifik sebagai sebuah fungsi dari kedua properti, yaitu f = V(T,P).
Ekspansivitas volume adalah indikasi perubahan volume yang terjadi ketika
temperature berubah, sementara tekanan tetap konstan. Kompresibilitas isotermal
merupakan indikasi perubahan volume yang terjadi ketika tekanan berubah
sedangkan temperature konstan. Kompresibilitas isentropik (α) merupakan
indikasi perubahan volume yang terjadi ketika tekanan berubah sedangkan entropi
tetap konstan
dengan
satuan untuk α yaitu kompresibilitas isentropik adalah kebalikan satuan dari
tekanan(Moran dan Saphiro,2004).
Keadaan
seimbang termal yaitu sistem berada dalam keadaan seimbang termal dengan
lingkungannya, apabila koordinat-koordinatnya tidak berubah, meskipun sistem berkontak
dengan lingkungannya melalui dinding diatermik. Keadaan keseimbangan
termodinamika adalah sistem berada dalam keseimbangan termodinamika, jika memenuhi
syarat tiga keadaan seimbang yaitu keadaan seimbang mekanik, keadaan seimbang
kimiawi, dan keseimbangan termal. Persamaan keadaan adalah sebuah persamaan
konstitutif yang menyediakan hubungan matematik antara dua atau lebih fungsi keadaan
yang berhubungan dengan materi, seperti temperature, tekanan, dan volume(Supriyanto,2005).
Anomali
air merupakan fenomena penyusutan volume air pada suhu dari 0°C sampai dengan 4°C.
Anomali air biasa disebut dengan penyimpangan yang terjadi pada air. Anomali
air dapat terjadi karena struktur antar molekul pada saat bentuk es lebih
renggang, sedangkan dalam bentuk air lebih rapat. Sehingga, pada saat
dipanaskan dari 0°C sampai dengan 4°C, molekul air yang berbentuk es akan
merapat terlebih dahulu dan berakibat volumenya menyusut. Setelah suhu lebih
dari 4°C, air akan kembali memuai seperti zat air pada umumnya. Akibat dari
anomali air, maka air akan memiliki volume minimum dan massa jenis maksimum
saat mencapai suhu 4°C. Jika temperature sudah melebihi 4°C maka air jika
dipanaskan akan memuai, sedangkan jika didinginkan akan menyusut(Saputri,2014).
IV. Metodologi Percobaan
a. Bola kaca (1 buah), berfungsi sebagai tempat perubahan volume
b. Piston (1 buah), berfungsi sebagai alat ukur perubahan volume
c. Selang (1 buah), berfungsi sebagai pengukur zat gas dari bola kaca ke piston
d. Ember (1 buah), berfungsi sebagai wadah air dan bola kaca
e. Termometer (1 buah), berfungsi sebagai alat pengukur suhu dalam skala
f. Statif (1 buah), berfungsi sebagai penyangga piston
g. Air dan es batu (secukupnya), berfungsi untuk memvariasikan suhu
h. Variasi beban (secukupnya), berfungsi sebagai pemvariasi tekanan dan diletakkan diatas piston
i. Pengaduk kaca (1 buah), berfungsi sebagai pengaduk agar suhu cepat merata
j. Neraca (1 buah), berfungsi untuk mengukur massa beban
4.2 Gambar Rangkaian Alat
4.3 Langkah Kerja
4.3.1 Kompresibilitas
4.3.2 Ekspansivitas
4.4 Metode Grafik
4.4.1 Ekspansivitas
4.4.2 Kompresibilitas
V. Data dan Analisa
Rekomendasi Laporan lain:
5.2 Analisa Data
Prinsip
kerja dari kompresibilitas adalah dengan berkurangnya volume dari suatu
zat akibat laju perubahan volume terhadap tekanan pada suhu yang konstan
(isothermal). Sistem yang terjadi pada kompresibilitas adalah sistem tertutup
karena terjadi perpindahan energi berupa kalor dan kerja tetapi tidak terjadi
perpindahan materi antara sistem dan lingkungan. Pada peristiwa
kompresibilitas, kerja (W) bernilai positif karena lingkungan melakukan kerja
terhadap sistem. Kompresibilitas pada percobaan ini dilakukan dengan meletakkan
bola kaca didalam ember besamaan dengan es batu yang menutupi permukaan bola
kaca, lalu bola kaca dihubungkan dengan piston menggunakan selang agar dapat
diukur perubahan volume yang terjadi akibat adanya beban yang diberikan serta
divariasikan dan diletakkan diatas piston sebagai pemberi tekanan. Suhu es ini
membuat gas H2O terbentuk dalam bola kaca sehingga gas H2O
dapat menahan piston pada posisi 100 ml. Bola kaca digunakan karena kaca
merupakan material yang baik dalam menghantarkan kalor dan material yang buruk
dalam proses isolasi karena dapat menghantarkan kalor keluar dari bola kaca
melalui perambatan pada dinding kaca (keluar sistem). Tabel 1 merupakan data
hasil percobaan kompresibilitas, dapat dilihat bahwa semakin besar massa atau
beban yang diberikan pada piston menyebabkan perubahan volume yang semakin
kecil. Hal ini menunjukkan hubungan antara massa atau beban yang bertindak
sebagai pemberi tekanan (P) dengan volume (V) yaitu berbanding terbalik
(P~1/V). Data dari tabel 1 ini kemudian diplot ke dalam sebuah grafik, berikut
ini adalah gambar grafiknya :
Gambar grafik diatas menujukkan kemiringan garis atau
gradien atau slope yang negatif, yaitu sebesar -9,88.10-1 dan ketelitian sebesar 49%. Dari grafik hubungan antara volume (ΔV) terhadap tekanan (ΔP) diatas didapatkan nilai K = - 8,5.10-4/Pa. Pada perhitungan manual didapatkan nilai rata-rata kompresibilitas (K) sebesar - 2,84.10-7/Pa. Perbedaan
antara metode perhitungan manual dengan metode grafik disebabkan oleh beberapa
hal, antara lain seperti pengaruh suhu ruangan, suhu didalam bola kaca yang
tidak terisolasi sehingga suhu tidak benar-benar konstan, kesalahan paralaks
dalam pembacaan skala termometer, pengukuran massa beban yang kurang tepat, dan
lain-lain.
Selain itu pada percobaan
kompresibilitas terjadi peristiwa anomali air. Anomali air adalah
peristiwa penyusutan volume air yang terjadi pada suhu 0°C sampai dengan 4°C
ketika dipanaskan. Terjadinya anomali air disebabkan karena molekul H2O
dalam bentuk padat (es) penuh dengan rongga (volume membesar) sehingga massa
jenis lebih kecil dibandingkan dalam bentuk cair (air). Dengan demikian, pada
saat dipanaskan, volume dari molekul H2O (es) menyusut terlebih
dahulu, sehingga molekul H2O (es) merapat dan setelah melewati 4°C
akan kembali memuai (merenggang). Pada percobaan ini yang bertindak sebagai
pemanas es adalah suhu ruangan, karena suhunya lebih tinggi. Es diambil sedikit
demi sedikit agar perubahan suhu yang terjadi naik secara perlahan-lahan dari 0°C.
Inilah alasan mengapa digunakan suhu ruangan sebagai pemanas air dibandingkan
dengan air panas, agar perubahan suhu yang terjadi dapat teramati karena suhu
naik secara perlahan-lahan, berbeda jika dipanaskan menggunakan air panas maka
suhu akan langsung tinggi ketika diukur oleh termometer. Perubahan wujud dari
es menjadi cair atau penyusutan volume air pada percobaan ini didapatkan pada
suhu 0°C sampai dengan 4°C ditandai dengan semua es berubah wujud menjadi cair
dan setelah suhu 4°C air mengalami pemuaian seperti zat cair pada umumnya,
ditandai dengan berkurangnya volume pada air (penguapan). Berarti massa jenis
air maksimum pada percobaan ini terjadi pada suhu 4°C karena massa jenis air
maksimum (ρmax) didapatkan ketika volume air minimum yaitu pada suhu
4°C, sebab massa jenis dan volume memiliki hubungan yang berbanding terbalik (ρmax
~ 1/Vmin). Hasil ini sesuai dengan literatur dari Dasar-Dasar Fisika
Universitas karya Zemansky yang menyatakan bahwa air akan menyusut pada 0°C sampai
dengan 4°C ketika dipanaskan dan memuai kembali setelah 4°C.
Prinsip kerja dari ekspansivitas
adalah dengan bertambahnya volume dari suatu zat akibat laju perubahan volume
terhadap suhu pada tekanan yang konstan (isobar). Sistem yang terjadi pada
ekspansivitas adalah sistem tertutup karena terjadi perpindahan energi berupa
kalor dan kerja tetapi tidak terjadi perpindahan materi antara sistem dan
lingkungan. Pada peristiwa ekspansivitas, kerja (W) bernilai negatif karena
sistem melakukan kerja terhadap lingkungan. Ekspansivitas pada percobaan ini
dilakukan dengan meletakkan bola kaca didalam ember besamaan dengan air dingin
kemudian ditambahkan sedikit demi sedikit air panas agar suhu dapat naik serta
divariasikan. Kemudian bola kaca dihubungkan dengan piston menggunakan selang
agar dapat diukur perubahan volume yang terjadi akibat adanya suhu panas yang
diberikan. Suhu air panas ini membuat gas H2O terbentuk dalam bola
kaca sehingga gas H2O dapat mendorong piston dari posisi 0 ml. Tabel
2 merupakan data hasil percobaan ekspansivitas, dapat dilihat bahwa semakin
besar suhu yang diberikan pada piston menyebabkan perubahan volume yang semakin
besar juga. Hal ini menunjukkan hubungan antara suhu (T) dengan volume (V)
yaitu berbanding lurus (T~V). Data dari tabel 2 ini kemudian diplot ke dalam
sebuah grafik, berikut ini adalah gambar grafiknya :
Gambar grafik 2 hubungan antara volume dengan suhu diatas menujukkan
kemiringan garis atau gradien atau slope yang positif, yaitu sebesar 6,35.10-6 dan
ketelitian sebesar 33%. Dari grafik ini kemudian didapatkan nilai ekspansivitas (β) sebesar 5,47.10-3/Kelvin. Pada perhitungan manual didapatkan nilai rata-rata ekspansivitas (β) sebesar 4.10-3/Kelvin. Perbedaan antara metode perhitungan manual dengan metode grafik disebabkan
oleh beberapa hal, antara lain seperti pengaruh suhu ruangan, suhu didalam bola
kaca yang tidak terisolasi, kesalahan paralaks dalam pembacaan skala termometer,
dan lain-lain.
VI. Kesimpulan
6.1 Volume dan suhu dari suatu gas memiliki hubungan
berbanding lurus, dibuktikan dengan gradien yang positif pada grafik hubungan
antara volume dengan suhu. Jika suhu semakin besar maka volumenya juga semakin
besar dan begitu pula sebaliknya.
6.2 Volume dan tekanan dari suatu gas memiliki hubungan yang saling berbanding
terbalik, dibuktikan dengan gradien grafik yang negatif pada grafik hubungan
antara volume dengan tekanan. Jika tekanan semakin besar maka volumenya semakin
kecil dan begitu pula sebaliknya.
6.3 Anomali air adalah peristiwa penyusutan volume air yang
terjadi pada suhu 0°C sampai dengan 4°C ketika dipanaskan dan setelah melewati
4°C akan kembali memuai (merenggang). Perubahan wujud dari es menjadi cair atau
penyusutan volume air pada percobaan ini didapatkan pada suhu 0°C sampai dengan
4°C ditandai dengan semua es berubah wujud menjadi cair dan setelah suhu 4°C
air mengalami pemuaian seperti zat cair pada umumnya, ditandai dengan
berkurangnya volume pada air (penguapan). Oleh karena itu, massa jenis air
maksimum pada percobaan ini terjadi pada suhu 4°C karena massa jenis air
maksimum (ρmax) didapatkan ketika volume air minimum yaitu pada suhu
4°C, sebab massa jenis dan volume memiliki hubungan yang berbanding terbalik (ρmax
~ 1/Vmin). Hasil ini sesuai dengan literatur dari Dasar-Dasar Fisika
Universitas karya Zemansky yang menyatakan bahwa air akan menyusut pada 0°C sampai
dengan 4°C ketika dipanaskan dan memuai kembali setelah 4°C.
6.4 a. Nilai kompresibilitas (K) :
1. Perhitungan manual : - 2,84.10-7/Pa
2. Perhitungan grafik : - 8,5.10-4/Pa
b. Nilai ekspansivitas
1. Perhitungan manual : 4.10-3/Kelvin
2. Perhitungan grafik : 5,47.10-3/Kelvin
VII. Daftar Pustaka
Hamid, S.2007. Persamaan keadaan Termodinamika. Bandung : ITB.
Hikman, M.2005. Termodinamika. Jakarta : UI Press.
Moran, M dan Saphiro, H.2004. Termodinamika Teknik Jilid 2. Jakarta : Erlangga.
Saputri, M.2014. Pemuaian Zat Cair dan Anomali Air. Bandung : UNPAD.
Supriyatno.2005. Persamaan Gas Ideal. Jakarta : Erlangga.
Zemansky, Sears.1954. Dasar-Dasar Fisika Universitas. Jakarta : Bina cipta.
VIII. Bagian Pengesahan
-
IX. Lampiran
9.1 Lampiran 1
9.2 Lampiran 2
9.3 Lampiran 3